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The Ames Test e
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Mutagenicity Detection is a Contemporary Issue

ACCC recalls more jeans containing hazardous Potential contamination of Australian metformin medicines
dye linked to cancer Low levels of contamination with N-nitrosodimethylamine (NDMA)

Published: 18 November 2020

By consumer affairs reporter Amy Bainbridge

Posted Thu 15 May 2014 at 3:53pm, updated Thu 15 May 2014 at 6:34pm

-

Textiles recalled after tests for azo Product Safety Recall

B W W W Doyouown this product?

dyes

The Laundress Fabric Conditianers
The Laundress brand fabiic canditioner products

= =

W the Product s recalled: The recaled products can contan a

Soid in various sizes and cantaines siyles

Date 15 May 2014
]

posure
adverse heallh efects, Including cancer

’
’
’
’
’
’
’
’
Dates s0i: 1 January 2021 - 31 March 2023 ’
’
’
’
’
’
’
’
’

\'
l

Five popular sunscreens recalled after a cancer-
causing ingredient was added to the batches

Five popular Australian sun safety products have been urgently recalled after a cancer-causing ingredient was
detected in the batches.

The University of Sydney Page 3



Computational Ames Models
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\

QSAR Algorithm ‘

A

Image: https://www.fda.gov/drugs/regulatory-science-action/new-developments-regulatory-gsar-modeling-new-qsar-model-predicting-blood-brain-barrier-permeability

The University of Sydney
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Explosion in Al Research for Pharmacology / Tox
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What Do Existing Models Look Like?

Team or Institution Name

Model Name

BA (%) F1 Score

* Big Players A

Meiji Pharmaceutical University

* MN-AM = US FDA-affiliated e

* MIT — World #1 University ij
* Old Architectures
* “Classical machine learning” MRf
* Australia uses TIMES _AMES M

Politecnico di Milano

* Costs >$50k / year

Massachusetts Institute of Technology

Chemotargets

ISS

* Still not good enough to replace

Gifu University

ChemTunes. ToxGPS Ames NIHS,2
MMI-STK2

Leadscope Consensus Model
TIMES_AMES 17.17.3
GeneTox-1S
Avalon
PHARM_BMUT V1.8.0.0.17691.350
S+MUT_NIHS_ABC
DRSpicySTiM-Ensemble
Sarah Nexus v.3.0.1 (2068 chemicals)
DeepAmes
CONSENSUS (18k) V0.9.1
DL
GNN(kMoL)_bestbalanced
CISOC-PSMT (SIOC, CAS, China)
GCN
AMBIT DeepN v4.85
Chemprop
CHMT_GBoostSC
Mutagenicity ISS-modified2020

xenoBiotic 0.9q

78.5
77.0

73.7
73.3
72.6
71.9
712
71.2
70.1
69.0
69.1
68.1
68.7
67.2
66.4
65.8
65.6
64.3
64.3
62.8
60.3

0.538
0.524

0.497
0.511
0.500
0.485
0.497
0.421
0.425
0.410
0.476
0.402
0.403
0.470
0.393
0.444
0.408
0.420
0.414
0.348
0.334

in vitro testing

The University of Sydney
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How can we Make the Best Ames Model?

* What models performed best on other biology tasks?
* Benchmark molecular prediction
* Multi-endpoint toxicity prediction

* Use state-of-the-art techniques from Al literature
* Transformers — ChatGPT

* Graph neural networks — Facebook friend recommendation
* Special encodings — Extra chemical information

e Harder math &

* A graph transformer?

The University of Sydney Page 7



Hypotheses

We hypothesise a graph transformer
for Ames mutagenicity will:

Table 3: Results on MolHIV.

method #param. AUC (%)
. GCN-GraphNorm [5, 8] 526K 78.834+1.00
]. Be ’rhe Mmost effec’rlve When PNPA[IO] 326K 79.054+1.32
. * ot PHC-GNN [29] 111K 79.34+1.16
’rrcuned on the Idrges’r eXIShng DeeperGCN-FLAG [30] 532K 79.42+1.20
Ames datasets DGN [2] 114K | 79.70+0.97
GIN-vN[54] (fine-tune 3.3M 77.8041.82
Graphormer-FLAG 47.0M | 80.51+0.53
. Image: http://arxiv.org/pdf/2106.05234.pdf \
2. Achieve state-of-the-art
The basis of our
predlc’rlve performomce architecturel

R __D‘%bl?ll?bbl??% ‘eval_accu {"accuracy': ¢ ‘eval_ r‘ec.uion" { r‘ec:ision': 8.52}, 'eval _recall': {'rec

eval f1': {'f1': §.6842105263 1'3? run ime E _' 33, ‘'eva - second': 7.01, 'eval steps per second it 'g+]
o' 0.0 Braieimap
81 rning_rate': 4.375e-85, ‘epoch’': 2.8}

. . bl i‘
12 |_ | 5/40 [00:10<01:03, 1.81s/it[] deam654." >

The University of Sydney Page 8



Aims

Hence, we aim to:

* To construct a graph transformer
incorporating our lab’s unique
domain knowledge

* To compare the performance of our
model with others from the literature

* To deploy this model on our lab
website

* Enabling regulatory, industrial use

The University of Sydney

rch

Publications

Tools

Contact

Our research topics

In silico toxicology

Our primary research focus is understanding the adverse effects of chemicals on living
organisms. We employ computer-based in silico methods to predict the interactions

between cellular components an:
industrial substances, and
molecular properties which are modelled to a variety of adverse outcomes including

d potentially

toxic chemicals such as medications,
1 These ¢ i reveal

cancer, immune sensitisation, and endocrine disruption.

Computer-aided drug design

The knowledge we gain about how chemicals interact with biological systems enables
us to adapt our research to design molecules with therapeutic potential. We utilise in
silico methods to generate drug candidate structures and predict their properties to
quantify how well they work. We have successfully applied our techniques on various
drug classes including anti-malarials and kinase inhibitors.

Translational and regulatory science

A major element of our work is translating our basic research into practical tools that
support real world decisions. We actively collaborate with regulatory scientists to
better understand which substances should be prioritised for risk assessment. We also
participate in international predictive toxicology and drug design challenges to
validate our techniques amongst academic and industry standards.

Our lab website g5
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Methods

Understanding Neural Networks




Conventional Neural Networks for Ames Mutagenicity

Ring? ~— -
0
LogP <12 ~.
\N/N\\ 0 ]
NDMA Structure Xn

NDMA Binary Vectoi
(What the computer “sees”

The University of Sydney

elele'e
elelele
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®

Ames
‘ Positivity
+/-
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/
(D

Conventional Neural Network
Neuron values update to learn
Ames positivity
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The Graph in Graph Transformers

[TTTT]
Neuvural
A
N N - N\\ Network fn.es.s
O - [TTTT e — Positivity
Processes +/-
| aggregated vectors
NDMA Structure
[TTTT]

Example atom vector
Graph Neural Network

Molecular Structure imbued within

Sp3 Hybridised? \;0

Carbon atom?2 =
the network structure 1

The University of Sydney Page 12



Methods

Understanding AmesFormer

THE UNIVERSITY OF
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The Transformer in Graph Transformers

Attention

* Prioritise the most important atomic
features

* Is chirality probably more important than
conjugation?

* Allow the network to always see its local
environment

e Results in much better learned molecular
representations

The University of Sydney
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The Transformer in Graph Transformers

|

Prediction!

|

Feed Forward Network

Ames Positive J § Linear i
3 R S
CentrQIliy enCOd I ng Feed Forward é - oropedt ’ E
* Introduced at the beginnin i \ [pron E
. 9 9 QKV MatMul E !
e Summed with the atom feature vector T S ;
* “How many bonds does this atom make? —

E Eﬁmmg

:_) Edge

1 Encoding

Scale
- — ¥
h . = h . _|_ Z QKT MatMul
I I deg(v;) —
/ \ Linearg Jw Lineary |'H Linearvﬁjbal;::g;n
Atom feature vector Bond count
Layer Normalisation
‘
Encoding
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Feed Forward Network

The Transformer in Graph Transformers A g
Ames Positive ' inear :
7 DI .
° ° ! Dropout i
Spatial encoding Foed Forward !
* Biases the attention — The amount each atom w: — : 5
feature attends the others . ; |
* “How much does every other atom affect me? SoftMax ] S S
e Upshot: Pay less attention to distant atoms, as ] { Spatal I
they likely exert less electrostatic forces 69' cage
Encoding
. Scale
Each atom pair T
QKT MatMul
b ¢ (Vi ? vj' ) rLinearq Jw fLinearK 1 rLinearV‘Jbﬂl;:z:g:n

[ ]

[ ]

[

3

Layer Normalisation

Biasing scalar  Shortest path

distance

The University of Sydney
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Input Node

P

Centrality
Encoding
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The Transformer in Graph Transformers

Edge encoding

* Biases the attention — “How important
are the bonds my neighbours form?”

* Basically, the mean of the dot products
of all bond features on each shortest
path times a bias

N

|

Prediction!
Ames Positive

|

[ )

Feed Forward

[ ]

QKV MatMul
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|

L ¥

Lineary
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Average them! Biasing matrix

Dot product bond features

The University of Sydney ad Iong Shor‘l'eS'I' pCI'I'hS

[

3

[ ]

[

3

Layer Normalisation
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Input Node

P

Centrality
Encoding
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Feed Forward Network

Pl [
Prediction! R i :
. . Ames Positive . : inear i
# L
The Final Architecture of AmesFormer » S f ;
4 I
’ : Dropout :
Feed Forward ' ) /|
- . | :
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Results
Hypothesis 1 — Is more data always better?




Testing Our Hypotheses — Is More Data Better?

* We trained three models — One on each Ames dataset

* Surprisingly, the 2" largest dataset produced the best performing model

0.750 0.475
8
0.725‘ 0.450' _
_8_ 0.425 1
0.700 1
> 0.400 1
o 0.6751
2 £ 0.3751 ° g
ﬂ: ] o] —_— Q
E 0.650 8 2 g
% g r, 0.3501
pfg 0.625 0,325
0.575 1 B === AmesFormer-Hansen ] === AmesFormer-Hansen
' o = AmesFormer-Honma 0.2757 o = AmesFormer-Honma
AmesFormer-Combined AmesFormer-Combined
0.550 T T T 0.250

The University of Sydney Page 20



Testing Our Hypotheses — Is More Data Better?

* We trained three models — One on each Ames dataset
* Surprisingly, the 2"¥ largest dataset produced the best performing model

AmesFormer- (AmesFormeD AmesFormer-

Model
Hansen Honma Combined

Mean BA (%) 60.6 +0.1 69.2 +0.1 67.8 +0.2
Mean F1 0.320 +0.1 0.426 +0.1 0.414 0.2
ECE 0.196 +0.159 | 0.197 £0.123 | 0.157 +0.154
Best epoch 80 55 50
Best validation loss 0.492 0.667

\ 0.916 )

The University of Sydney
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Understanding Our Results — Why isn’t More Data Better?

* The best dataset showed the most chemical diversity — Silhouette Score of 0.488

* Others had silhouettes of 0.378 and 0.384
* l.e. It covered the broadest range of molecular structures

Ames label
& Positive

0.25

' &  MNegative

E . 0,20
o -
I: 8
g y b4
= & 015
: :
=] i =]
g 3
3 E
3 H
5 =
[ -0.05
S
3] \ . - = (M
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
(c) Honma dataset PCA. (d) UMAP clusters of the Honma dataset.

The University of Sydney Page 22



Results
Hypothesis 2 — Is Our Model State-of-the-Art?




Testing Our Hypotheses — Is
Our Model State-of-the-Art?

Our model is the third best
predictor of Ames mutagenicity

We beat several established
teams & companies

Significant improvement (3.9%)
over previous lab result

The University of Sydney

Team or Institution Name

Model Name

BA (%) F1 Score

MN-AM

Meiji Pharmaceutical University
Our result

Instem

LMC Bourgas University

Altox Ltd.

Evergreen Al Inc.

MultiCASE Inc.

Simulations Plus Inc.

The University of Sydney

Lhasa Ltd.

NCTR/FDA

IRFMN

Liverpool John Moores University
NIBIOHN

SIOC, CAS

Politecnico di Milano
IdeaConsult Ltd.

Massachusetts Institute of Technology
Chemotargets

ISS

Gifu University

ChemTunes. ToxGPS Ames NIHS, 2
MMI-STK2
AmesFormer-Pro
Leadscope Consensus Model
TIMES_AMES 17.17.3
GeneTox-iS
Avalon
PHARM BMUT V1.8.0.0.17691.350
S+MUT_NIHS_ABC
DRSpicySTiM-Ensemble
Sarah Nexus v.3.0.1 (2068 chemicals)
DeepAmes
CONSENSUS (18k) V0.9.1
DL
GNN(kMoL)_bestbalanced
CISOC-PSMT (SIOC, CAS, China)
GCN
AMBIT DeepN v4.85
Chemprop
CHMT_GBoostSC
Mutagenicity ISS-modified2020

xenoBiotic 0.9q

78.5
77.0
74.0
73.7
73.3
72.6
71.9
71.2
71.2
70.1
69.0
69.1
68.1
68.7
67.2
66.4
65.8
65.6
64.3
64.3
62.8
60.3

0.538
0.524
0.479
0.497
0.511
0.500
0.485
0.497
0.421
0.425
0.410
0.476
0.402
0.403
0.470
0.393
0.444
0.408
0.420
0414
0.348
0.334
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Understanding Our Results — Why is AmesFormer so Good?

* Representational Power
. We can always tell different molecules apart

. Earlier models use those “bit vectors”, these are condensed
representations of the molecule

. Hence, similar, but pharmacologically distinct molecules can produce
the same vector, and thus same prediction, despite differing toxicity

. This is known as bit clashing — Causes activity cliffs

Why doesn’t AmesFormer suffer the same problem?



Understanding Our Results = Why is AmesFormer so
Good?

1. Representational Power via the W-L Test
. We avoid this problem using our spatial encoding

. The spatial encoding is equivalent to the shortest-path-enhanced
Weisfeiler-Lehmen graph isomorphism test

. An inductive proof is available in Chengxuan, et al. 2021

A.1 SPD can Be Used to Improve WL-Test

L1 Deedl

Figure 2: These two graphs cannot be distinguished by 1-WL-test. But the SPD sets, i.e.,
the SPD from each node to others, are different: The two types of nodes in the left graph

The University of Sydney Page 26
Image: https://arxiv.org/pdf/2106.05234



Understanding Our Results — Why is AmesFormer Good?

2. Representational Power via the Graph Laplacian

. Our GNN can differentiate any two graphs which differ in the
spectral properties of their graph Laplacian

o A constructive proof is shown in Kanatsoulis & Ribeiro, 2023

Laplacian L of a graph G is defined as:

L=D-A, (4.3)

where D is the degree matrix and A is the adjacency matrix. Two graphs G and G’ are distinguished if

their Laplacians have different eigenvalues:

1;(G) # A;(G’) for some eigenvalue A;. (4.4)

The University of Sydney Page 27



Certainty

How do we Know These Results are Accurate?

THE UNIVERSITY OF

SYDNEY




Bayesian Uncertainty Estimation via MC Dropout

" We use Monte Carlo (MC) dropout to generate Cls for
our results — BAC

The University of Sydney
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Bayesian Uncertainty Estimation via MC Dropout

" We use Monte Carlo (MC) dropout to generate Cls for
our results — F1

-
o

j Perfectly calibrated

AmesFormer-Honma
Median Calibration

e
)

o
o

e
=~

o
(¥

o
o

Fraction of positives (Positive class: 1)

00 02 04 06 08 1.0
Mean predicted probability (Positive class: 1)
(b) The median calibration curve of AmesFormer-

Honma over 1000 Monte Carlo dropout samples with

an associated [ECE|of 0.197 (95% CI: 0.087, 0.333).

The University of Sydney Page 30



Bayesian Uncertainty Estimation via MC Dropout
= But...

" We can extend this methodology to the regulatory context by

sampling the uncertainty of our inference (l.e., when we are
using the model live)

= QOver 1000 passes we are integrating under the distribution
of predictions to gauge our uncertainty

" We can therefore sample our uncertainty for the prediction
of that particular chemical

= Recommended by the OECD QSAR Reporting Guideline

The University of Sydney Page 31



Bayesian Uncertainty Estimation via MC Dropout

Feed Forward Network
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Bayesian Uncertainty Estimation via MC Dropout

Prediction!
Ames Positive

1

Feed Forward

1

H
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Feed Forward Network
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The UniversitTf Sydney
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Bayesian Uncertainty Estimation via MC Dropout

Molecule Pass 1

The FFN in the

b |

ransformer Diagram

PPPPPP



Bayesian Uncertainty Estimation via MC Dropout

Molecule Pass 2

The FFN in the

b |

ransformer Diagram

ququququ



Bayesian Uncertainty Estimation via MC Dropout

Molecule Pass 3

The FFN in the

b |

ransformer Diagram
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Future Directions
One Hard Thing That Sounds Easy




Future Directions — Taking the Number 1 Spot

* Our performance is very good, but two models are better —
Why?
* Both better models are “ensembles”
* Combinations of multiple different models — Logistic regression,
simpler graphs, etc
* These models can see whole graph properties — Solubility, etc

* AmesFormer cannot see these properties, it only sees the more
detailed atom and bond infor

How can we incorporate these whole molecule properties into
AmesFormer?

The University of Sydney Page 38



Future Directions — Taking the Number 1 Spot

It's tough...

Node-wise Approach

Add whole-graph data to each
atom

Pros
* Done in literature (GraphGPS)

* Trivial to implement

Cons

* Massive data duplication — There’s
only one set of graph properties, but
we add them to every node

* Computationally inefficient

The University of Sydney

Attentional Approach

Add whole-graph data to the
graph attention calculation

Pros

* No duplication — Improved efficiency
Cons

* Unproven
* Hard to implement

* Network can’t “see” whole-graph data
before attention, less opportunities to
incorporate it into the molecular

representation
Page 39



Future Directions
One Easy(ish) Thing That Sounds Hard




Future Directions — Improving Accessibility

* Qur models are relatively efficient, but still required days to
train on a $US 2000 graphics card

* For more complex tasks, like general mutagenicity, this would be
longer

* This is out of reach for many small academic labs & startups

How can we make our model more computationally efficient
and accessible to compute-poor users?

The University of Sydney Page 41



Future Directions — Improving Accessibility

Improve attention

The most computationally expensive part of AmesFormer

* Currently, we do multiple attention calculations in parallel
* Each attention head learns different things to “attend” — Great performance!
* But do all heads actually learn to attend something valuable?
* No - So, can we:
* Remove useless heads, retain the good ones?

* Maintain the same performance whilst improving computational efficiency?

We can use GFiSH-Former by Tan, et al. 2022 to accompish this

The University of Sydney Page 42



Future Directions — Improving Accessibility

1. Eigenvalue decomposition — Attention covariance matrices are
low-rank

* l.e., Most of the information in them is useless, we only need the most
important 10%

2. Calculate ~3 heads — This should be enough to capture ~920%
of variance

*  Way less than the 32 currently calculated for AmesFormer

3. Calculate the remaining 29 as a finite admixture of those 3

The University of Sydney Page 43



Future Directions — Improving Accessibility

The head we’'re calculating
E.g., head 4

M
: Zgb(pkj(QkKkT + 0 © Ej)), € ~ N(O,I),
k=1

The University of Sydney Page 44
Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions — Improving Accessibility

Is a mixture of our 3
main heads M

M
Aj = oo QK" + 01 @ €5)), € ~ N(0,T),
k=1

Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions — Improving Accessibility

With a non-linear transformation

E.g., Gaussian

M
Aj = Zéﬂpkj(QkKkT + o1 ©¢€j)), €e~N(0,1),
=1

The University of Sydney Page 46
Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions — Improving Accessibility

Weighted by a parameter determing much
each of the 3 main heads should contribute

M
A;=> o) QeKi ' + 0 O€j)), e~N(0,T),
k=1

Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions — Improving Accessibility

Where this is the actual content of the
main head (e.g., head 2)

M ,
A=Y 6o QK | + o1 ©¢j)), €~ N(0,1),
k=1

The University of Sydney Page 48
Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions — Improving Accessibility

Perturbed by some isotropic Gaussian noise sampled from a
distribution with mean O and covariance of the identity matrix

A; =Y ok QK" How O ¢j)), € ~N(0,T))

k=1

The University of Sydney Page 49
Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions

With these improvements we can:
* Improve performance

*  Whilst making our model
cheaper and easier to run

Page 50
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Summary
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